References

Bates, Douglas, Martin Mächler, Ben Bolker, and Steve Walker. 2015. “Fitting Linear Mixed-Effects Models Using lme4.” Journal of Statistical Software 67 (1): 1–48. https://doi.org/10.18637/jss.v067.i01.
Blei, David M., Alp Kucukelbir, and Jon D. McAuliffe. 2017. “Variational Inference: A Review for Statisticians.” Journal of the American Statistical Association 112 (518): 859–77. https://doi.org/10.1080/01621459.2017.1285773.
Fernández-i-Marín, Xavier. 2016. ggmcmc: Analysis of MCMC Samples and Bayesian Inference.” Journal of Statistical Software 70 (9): 1–20. https://doi.org/10.18637/jss.v070.i09.
Gabry, Jonah. 2018. Shinystan: Interactive Visual and Numerical Diagnostics and Posterior Analysis for Bayesian Models. https://CRAN.R-project.org/package=shinystan.
Gabry, Jonah, and Tristan Mahr. 2021. “Bayesplot: Plotting for Bayesian Models.” https://mc-stan.org/bayesplot/.
Gamer, Matthias, Jim Lemon, and Ian Fellows Puspendra Singh <puspendra.pusp22@gmail.com>. 2019. Irr: Various Coefficients of Interrater Reliability and Agreement. https://CRAN.R-project.org/package=irr.
Horst, Allison Marie, Alison Presmanes Hill, and Kristen B Gorman. 2020. Palmerpenguins: Palmer Archipelago (Antarctica) Penguin Data. https://allisonhorst.github.io/palmerpenguins/.
Kuhn, Max. 2021. Caret: Classification and Regression Training. https://CRAN.R-project.org/package=caret.
Pinheiro, Jose, Douglas Bates, Saikat DebRoy, Deepayan Sarkar, and R Core Team. 2021. nlme: Linear and Nonlinear Mixed Effects Models. https://CRAN.R-project.org/package=nlme.
Stan Development Team. 2021. RStan: The R Interface to Stan.” https://mc-stan.org/.
van Buuren, Stef, and Karin Groothuis-Oudshoorn. 2011. mice: Multivariate Imputation by Chained Equations in r.” Journal of Statistical Software 45 (3): 1–67. https://doi.org/10.18637/jss.v045.i03.
Venables, W. N., and B. D. Ripley. 2002. Modern Applied Statistics with s. Fourth. New York: Springer. https://www.stats.ox.ac.uk/pub/MASS4/.